Hierarchical a Posteriori Residual Based Error Estimators for Bilinear Finite Elements

نویسنده

  • MALTE BRAACK
چکیده

We present techniques of a posteriori error estimation for Q1 finite element discretizations based on residual evaluations with respect to test functions of higher-order. This technique is designed for quadrilateral (or hexahedral) triangulations and gives local error indicators in terms of nodal contributions. We show reliability and efficiency of the estimator. Moreover, we present a simplification which is attractive from computational point of view as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chapter 6 A posteriori error estimates for finite element approximations 6 . 1 Introduction

The a posteriori error estimation of finite element approximations of elliptic boundary value problems has reached some state of maturity, as it is documented by a variety of monographs on this subject (cf., e.g., [1, 2, 3, 4, 5]). There are different concepts such as • residual type a posteriori error estimators, • hierarchical type a posteriori error estimators, • error estimators based on lo...

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements

We consider mixed finite element discretizations of linear second order elliptic boundary value problems with respect to an adaptively generated hierarchy of possibly highly nonuniform simplicial triangulations. In particular, we present and analyze four different kinds of error estimators: a residual based estimator, a hierarchical one, error estimators relying on the solution of local subprob...

متن کامل

A RESIDUAL–BASED POSTERIORI ERROR ESTIMATES FOR hp FINITE ELEMENT SOLUTIONS OF GENERAL BILINEAR OPTIMAL CONTROL PROBLEMS

In this paper, we investigate a residual-based posteriori error estimates for the hp finite element approximation of general optimal control problems governed by bilinear elliptic equations. By using the hp discontinuous Galerkin finite element approximation for the control and the hp finite element approximation for both the state and the co-state, we derive a posteriori upper error bounds for...

متن کامل

Residual and Hierarchical a Posteriori Error Estimates for Nonconforming Mixed Finite Element Methods

We analyze residual and hierarchical a posteriori error estimates for nonconforming finite element approximations of elliptic problems with variable coefficients. We consider a finite volume box scheme equivalent to a nonconforming mixed finite element method in a Petrov–Galerkin setting. We prove that all the estimators yield global upper and local lower bounds for the discretization error. Fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012